If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-30x-62=0
a = 6; b = -30; c = -62;
Δ = b2-4ac
Δ = -302-4·6·(-62)
Δ = 2388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2388}=\sqrt{4*597}=\sqrt{4}*\sqrt{597}=2\sqrt{597}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{597}}{2*6}=\frac{30-2\sqrt{597}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{597}}{2*6}=\frac{30+2\sqrt{597}}{12} $
| 7y=-259 | | 7y=-59 | | -2(x+2)x7=(x+6) | | -2(x+1/4)+4=5 | | -22=-8+7t | | 15b-10b=-25 | | q²-q-72=0 | | (6x=2)=46 | | (2x*2x)+200-34=-26 | | -3(1+4a=33 | | 2x^2+200-34=-26 | | 1/3(6x+24)-20=-1/412x-72 | | t-4=-54 | | 0.7x−5.92=0.34x+7.76 | | 8w+2w=50 | | 2(x+10)^2-34=-26 | | x÷5/7=3/10 | | 3x-8=8x+4*1/2 | | d+9=-29 | | 32=8(3r+7) | | 2.9x-15.62=4.1 | | x^2+10x=20=-4 | | v/3+5=2 | | 130+4x+6x=180 | | (0.5y/4)/9=(y+3)/8 | | 3.9=6.3x+7 | | -2x^2+948x=15000 | | 4u-u=-24 | | 1/9x-3=3 | | (3/4)n-23=34 | | .8x+7=13 | | 1.2x=173/9 |